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Graphics Processing Units (GPUs) are a promising alternative hardware to Central 

Processing Units (CPU) for accelerating applications with a high computational power 

demand. In many fields researchers are taking advantage of the high computational 

power present in GPUs to speed up their applications.  These applications span from 

data mining to machine learning and life sciences. The field of design optimization in 

particular benefits from this alternative hardware. The automated search on the design 

space has been delegated to GPUs or to a system of CPUs assisted by GPUs. This paper 

is among the firsts to review the use of GPUs especially for design optimization. The 

focus is on topology optimization, shape optimization and multidisciplinary design 

optimization (MDO). The target is to provide an overview not only on the progress made 

in design optimization using GPUs but also to highlights limitations that researchers 

have to cope with and the areas that require more research.     

Nomenclature 

CG = Conjugate-Gradient solver 

CPU = Central Processing Unit 

CUDA = Compute Unified Device Architecture  

CSM = Computational Structural Mechanics 

FD = Finite Difference  

HPC = High Performance Computing 

GPU = Graphics Processing Unit 

MDO = Multidisciplinary Design Optimization 

MG = Multigrid 

MPI = Message Passing Interface 

PCG = Preconditioned Conjugate Gradient solver 

SIMP = Solid Isotropic Microstructure with Penalization 

I. Introduction 

esign engineers are interested in identifying rapidly a design with optimal performance under specified 

constraints. This problem is easily formulated with the help of one or more objective functions that depend 

on typically a large number of design variables. The optimization process then requires finding a design from 

the design space, which minimizes the objective function respecting the set of constraints. For engineering 

problems, the design space is large and the objective function is relatively complicated, which leads to a 

computational intensive problem. 

Optimization methods can be roughly classified by the information required from the evaluation process. 

Zero-order methods require only the function evaluation of the objective function. While first-order methods 

require additionally the gradients of the objective function with respect to all design variables.  

Most of Zero-order optimization methods are nature-inspired and based on meta-heuristic. Some gradient-free 

methods improve a single design by exploiting its neighborhood in the design space through local search such as 

Tabu search and simulated annealing 
1
. Other zero-order methods are population-based such as evolutionary 

algorithms and swarm intelligence 
1
. These methods explore the design space with a multitude of interacting and 

evolving designs.    
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The first order optimization methods, such as steepest descent and Conjugate Gradient, have a better 

convergence behavior at an extra computational cost for derivative information. 

The objective function itself is problem specific. It can be as simple as a minimization of a total pressure loss in 

a channel (∫             ) or also more complicated nonlinear functions. In topology optimization, 

approaches such as the general Solid Isotropic Microstructure with Penalization (SIMP) help formulating the 

objective function. In shape optimization the design can be changed within a fixed topology (e.g. number of 

holes). The objective function can be derived from aerodynamics considerations, structural considerations, heat 

transfer considerations or other disciplines. In MDO the objective functions are originating from the interaction 

of different disciplines (e.g. structure mechanics, aerodynamics), where different levels of interactions exist 

(uncoupled, one way coupled or strongly coupled). 

The definition of the objective function often depends on the solution of partial differential state equations 

(PDE). For topology optimization, the function evaluation is in many cases delegated to a method of 

Computational Structural Mechanics (CSM) for which Finite Element discretization are the most popular. The 

evaluation of the objective function requires then to solve a set of linear equations of the form       with x 

the  results from which the objective function depends, matrix A the problem specific system matrix depending 

on the design variables and vector b a problem specific right-hand side potentially depending on the design 

variables. In aerodynamic shape optimization, a CFD method performs the evaluation solving the non-linear 

governing equations (Navier-Stokes, Euler). In multidisciplinary design optimization (MDO), CFD, CSM and 

eventual other methods can work in a segregated or interactive manner to perform the function evaluation. 

The complexity of the optimization problem, as described above, leads to algorithms with large demand on 

computational resources.  Thus high computational power and large memory resources are required to solve 

repeatedly the CSM and CFD models responsible for the objective evaluation. Three types of algorithm 

optimization
2
 concerning the convergence of the methods encourage the wide application of design 

optimization: mathematically, physically and computer science based optimizations. Physically-based 

optimization reduces the complexity of the objective function evaluation by replacing it with a less complicated 

model (metamodel) that generates a faster but less accurate design evaluation. The delicate task is to combine 

high fidelity (original objective function evaluations) and low fidelity (metamodel) evaluations to accelerate the 

design optimization process and keep the evaluation accurate enough. A mathematical-based optimization takes 

advantage of preconditioner and multigrid techniques to accelerate solving the system of linear equations. 

Finally a computer-science motivated optimization is to use high performance computing. The latter type of 

optimization is the central focus of this review.  

The high performance systems can be classified roughly following the memory architecture. The two main 

systems are then shared-memory and distributed-memory systems. For the shared-memory configuration, a set 

of processor shares the same memory area. Modern duo-core and quad-core CPU belong to this group. The 

programming interface (API) OpenMP
3
 handles the parallelization in this system. Few simple compiler 

directives (#pragmas) surrounding sequential for-loops divide automatically the work between available cores. 

Every core processes a part of the loop. Processor communication is very simple since they are all sharing the 

same memory contingent. The maximal available number of cores for this system is however too low to cover 

large-scale problems (maximum by Xeon phi with 60 cores
4
). In the distributed-memory configuration, better 

known as cluster, every processor has its own memory. The communication between processors occurs through 

message passing (MPI). A decomposition of work (better computational domain) is essential for the 

parallelization on distributed-memory systems. Every processor contributes to the solving of the optimization 

problem by running a part of the program. A high number of cores (e.g. cluster of CPUs) could speed up the 

whole process significantly. But the parallelization increases also the programming burden, since the designer 

has to distribute the computational work among the available CPU processors and regulate the communication 

using MPI
5
. For a real life application, a large number of cores is essential and MPI is the most implemented 

paradigm on today HPC systems. A hybrid system, consisting of a cluster of shared-memory system combining 

the two systems, knows an increasing appliance today.   

The appearance of programmable graphics processing units (GPU) enabled at relatively low price to access a 

new high computational power system. GPUs are indeed a shared-memory system but with a larger number of 

cores than CPU shared-memory systems. These GPU-cores are available in large numbers (up to 2400 cores
6
) 

and specialized on arithmetic computation, unlike the more powerful but general purpose CPU cores. The work 

of the design engineer is then to successfully divide the global optimization problem on small work packages 

that can be handled by a GPU core in a massively parallel manner. The problems that are easily divided on small 

and independent work packages are called embarrassingly parallel (e.g. simple image processing functions). If 

the work packages are not independent and need intercommunication, the problem is called coarse-grained 

parallel (e.g. low-order PDE solvers). If the communication demand increases, it is then called fine-grained 

parallel (e.g. High order PDE solvers).  

The aim of this work is to introduce researchers active on design optimization to GPU computing while 

highlighting the GPU advantages and challenges. This review should first help researchers to evaluate in how 
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far their application can benefit from GPUs and at the same time allow them to recognize possible bottlenecks 

and how other researchers managed to solve them. 

The remainder of this work focuses on the use of GPUs to accelerate optimization methods in topology 

optimization, shape optimization and multidisciplinary design optimization. The first section of this paper 

defines the term “modern GPU” as used in the title of this paper. The second section deals with the domain of 

application of design optimization covered in this work. The next section emphasizes the different optimization 

methods used in the literature and their parallelization potential. The third section discusses the advantages 

derived from the GPU use and highlights the areas requiring more research toward a better use of GPU high 

computational power.  

II. Modern Graphics Processing Unit (GPU) 

Today's GPUs evolved from graphic cards installed in most of computers starting from the eighties. The 

recent GPUs have a reduced heritage of old graphic cards but a historical point of view helps better defining the 

term “modern GPUs” as used in the title of this paper.  

A graphic card is a complex electric circuit that processes graphical data starting with 3D raw information 

about scene content sent from the CPU to render display pictures with increasing quality, effects and refreshing 

frequency. The process is called a graphics pipeline and comprises in a simplified way a vertices shader and a 

pixel shader. A shader is a program part capable of processing many data at the same time (e.g. apply lighting 

and shadow). A high pressure on graphic cards for fast refreshing of pictures (mainly video games) caused the 

spectacular increase of computational power reflected by the large number of cores packed in graphic cards. 

The high computational power attracted also scientists and engineers looking for low-cost high performance 

ways to speed up their applications. These first graphics cards were fixed-function devices and the user had to 

present his problem as a graphics problem to the card, which implicated a change on data storage and 

programming language. The term GPGPU, which stands for General Purpose Graphics Processing Unit, was 

established for this type of use of graphics cards. In response to this emerging demand, Nvidia released in 2007 

the first fully programmable open graphics processing units in a C-based programming language called CUDA
6
. 

At the same time AMD released its programmable GPU with OpenCL
7
, an open-source equivalent to CUDA. 

The term “modern GPUs” designates these fully programmable GPU with high-level programming language. 

Instead of the closed shaders as used initially, nowadays users write programs called kernels, which are run on 

GPUs. 

Compared to a CPU core, a GPU core is less powerful. A GPU includes however a large number of these 

cores which combined address a higher computational power (see picture Computational Power). The second 

advantage is the specialization of GPU cores. While CPUs are inherently responsible for a wide spectrum of 

tasks requiring large cache and flow control, a GPU is mostly dedicated to fixed point arithmetic calculation. 

This is reflected in the high achieved computation performance measured in Float Operations per Second 

(FLOPs). From a HPC point of view, modern GPUs are a series of multiprocessor connected to a global 

memory. Every multiprocessor grouping a number of streaming processors has own shared-memory and read-

only texture and constant cache. Recent GPUs have also a L1 and L2 caches. The bottleneck of any GPU is the 

latency of Global memory access and the small shared-memory. 

The programming model CUDA is specialized for Nvidia GPU whereas OpenCL can be run on AMD and 

Nvidia GPUs. This portability has a price on the programming overhead and the peak performance gain
8
. If peak 

performances are required a GPU under CUDA is more promising. But if portability is more important OpenCL 

is better fitted. The CUDA programming model for example starts for every kernel a high number of threads 

(smallest computation units) grouped in blocks. The GPU manage the threads in groups of 32 called warp. 

Every warp executes the same instruction.  

A coalesced access to data has to be followed in order to take advantage of the full bandwidth and special 

care has to be given to shared memory. If many threads access the same memory position simultaneously to 

write information (e.g. an incrementation) only a part will be saved and the rest is discarded. This non 

deterministic behavior is called a race condition and is very harmful for calculation, since a high amount of 

information can be lost and a random result may occur. Authors in design optimization, as in other disciplines, 

developed methods to deals with this problem and many other issues staying in the way for a high speedup of 

scientific application as it will follow in next section. Figure 1 depicts the key aspects and challenges for the use 

of GPUs. 

The CUDA C programming language adds a set of extensions to the standard C programming language. 

Recently is also CUDA Fortran
9
 available under commercial license. More information and examples are in the 

Cuda Programming Guide
6
 the CUDA C Best Practice Guide

10
 and other dedicated textbooks

11, 12
 

OpenACC provides a similar approach to OpenMP for programming GPU in more generic way. However 

accessing high speedups on OpenACC is not trivial and the directive is open but the compiler for this directive 

is under commercial license, which reduces its impact on scientific community compared to CUDA or OpenCL. 
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Libraries also can assist developers to speed up there application. Many libraries that exist for CPU have their 

equivalent for GPU such as CUFFT
13

, CUBLAS
14

 and CUSPARSE
15

. 

GPU optimization methods are well referenced and many times reviewed (Nvidia) but every area has its own 

governing equations and specific algorithms. A look on used GPU optimization in a specific field is essential to 

learn the adaptation of optimization method on everyday problems and to notice challenges. 

III. GPU in Design Optimization 

Design optimization problems are generally classified as topology optimization, shape optimization or sizing 

optimization. The topology optimization is very important in the early design conception phase. It generates 

indeed a blue print of the general appearance of the design. The result of this process can be fine-tuned later 

with a shape optimization method. This section reviews GPU use in topology and shape optimization. It 

comments also on the absence of GPU in MDO.   

A. Topology Optimization 

Topology optimization is about evolving a start design toward an optimal one in regard of objective 

minimization. Many approaches have been developed to capture and guide the evolution of the topology during 

the optimization process (see fig. 3). Two of the main methods are level-set
16

 and Solid Isotropic Microstructure 

with Penalization (SIMP)
17,18

. These methods have also been ported to GPU. The GPU potential of other 

methods such as the bubble method
19

 and evolutionary structural optimization 
20

(ESO) are still to be explored. 

This section introduces briefly the two first methods and focuses on their adaptation to GPU highlighting the 

challenges and advantages.  

 

1. Solid Isotropic Microstructure with Penalization method (SIMP) 

The SIMP method is based in a homogenization approach. It describes structures as a combination of solid-

void micro-elements. A pseudo-density variable (ρ) characterizes the material (solid ρ=1, void ρ =0) and is 

assumed to be constant within each element of the structure. The optimization process is about finding the 

optimal material distribution satisfying predefined constraints. This type of integer-programming is highly 

computational expensive and needs therefore to be avoided for large scale problems. A relaxation reduces the 

computational cost of the problem. Relaxation performs indeed an extension of possible values for the design 

variable from two values {0, 1} to the entire range [0, 1]. The problem becomes convex and can be 

consequently optimized with a gradient-based method. Through relaxation intermediate values for the pseudo 

density are indeed tolerated but physically not interpretable. A penalization solves this issue by promoting the 

 
Figure 1. Chart of GPU key themes grouped in programming paradigm, GPU topology and challenges. The 

programming could be performed through reediting of CPU code on CUDA or OpenCL, but also extended with 

special openACC directive or compiled with a source-to-source compiler to provide GPU code. The challenges of 

porting to GPU are related to global and shared memory efficient use.   
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integer value 0 and 1 for the pseudo-density. One of the many penalization methods is power law
18

 (ρ p
). The 

contribution of elements with intermediate densities is increasingly discarded with higher penalization factor p. 

The problem formulation with penalization is however not convex anymore. A remedy resides on applying a 

local filter on the density distribution averaging neighbor elements inside a predefined radius. An optimizer, 

such as optimality criteria
21

 (OC) or Method of Moving Asymptotes
22

 (MMA), is then responsible for the update 

of the design variables to locate the optimum solution.  

The linear elasticity state equations are solved with Finite Element Methods (FEM). Finite Elements 

Analysis (FEA) is the central component of the optimization process. It generates the structure answer to loads 

(e.g. displacements), which is essential to the evaluation of the objective function. 

The applications of the SIMP methods for large-scale problems with millions of design variables are 

computationally demanding and therefore require a high performance system. Work of Mahdavi et al. 
23

 is an 

example of parallelization of topology optimization application on CPU. GPUs as low-cost-high-performance 

alternative for HPC system have been also tested for solving topology optimization problems with SIMP 

method.  The implementation from Schmidt et al.
 24  

of SIMP on structured meshes with a matrix-free conjugate 

gradient solver is faster on GPU than 48 cores shared memory CPU. The GPU implementation from Wadbro et 

al.
 25

 of SIMP method with Preconditioned Conjugate Gradient solver applied to a 2D plate with heat source 

yield a speedup of 20x against single CPU and 3x against multi-threaded CPU. Zegard et al. 
26

 implemented the 

SIMP approach for unstructured meshes in GPU focusing on assembly.  

 

2. Level Set 

The level set method, developed originally by Osher et al.
27

 as a scheme to advance the motion of an 

interface, was applied later to topology optimization. In topology optimization, the level-set method optimizes a 

given structure by a sequence of guided motion of the structure boundaries. The guided evolution converges to 

an optimum solution by minimizing the objective function
16

. The flexible boundaries can represent complex 

shapes with the ability to create new topology through inserting new holes, or structure splitting and merging. 

Refer to the review of founder author
28

 for a detailed insight and work of Allaire
29

 for CPU applications.    

The method is built on two fundamental equations: the boundary evolution and the state equations.  The state 

equations are often discretized with FE methods. The boundary evolution is far simpler and can be solved with a 

finite difference method (FD). FD is a local method. It acts on a reduced group of elements of the mesh, which 

makes it suitable for efficient GPU processing 
30

. A GPU interpretation of this method is in the work of Herrero 

et al.
31

. Challis et al.
32

 solved an inverse homogenization problem with a GPU implementation of a level-set 

method targeting high resolution topology optimization. An increasing speedup with size is reported reaching 

13x for 3D problem with over 4 million design variables
32

.    

 

3. Underlying FEM 

Independently of the method (SIMP, level set) followed to formulate and solve the topology optimization 

problem, common steps exist: (1) An objective function is formulated reflecting the domain of application. (2) 

The design variable in this function is most of the time evaluated by solving a linear system A.x=f (3) an 

optimization scheme updates the design variable. The level set however advances also a boundary equation in 

time. The solver of the FEM discretized state equations is the most time consuming part of the optimization and 

should be the focus during the adaptation to GPU architecture. The rest of the procedures such as the optimizer 

(e.g. OC, MMA), boundary evolution (level set) is not time consuming so not directly relevant toward getting a 

good acceleration through GPU. Georgescu et al. provide a review on the use of GPU in all FEM steps from 

preprocessing to solving and post-processing. This section focuses on the assembly, the solver and the mesh 

importance. 

   

 Solver: 

The system of equations discretized with FEM can be solved directly
34

 (e.g. LU factorization) or iteratively 

(e.g. Conjugate gradients). Direct solvers are not appropriate for large scale problems since the full-size system 

matrix has to be stored. The memory usage scales with number of variable 
25

 following O (N
3/2

). The large 

amount of inter-processors communication makes the direct solver challenging for parallelization 
23

. Conjugate 

Gradient solvers on the other hand require less memory (O(N)) and are faster than direct methods which explain 

their large use in GPU 
32,35

. The system matrix is symmetric and positive definite for CG consequently a 

preconditioned Conjugate Gradient solver (PCG) is more favorable
25

. Multigrid has been also implemented on 

GPU to accelerate the convergence of linear system solver 
36, 37

. 

Cevahir et al.
38

 accelerated CG sparse iterative solver for unstructured mesh in a multi-GPU cluster.  

Hypergraph partitioning
39

 was used to reach a fair load balance and reduce the CPU-GPU communication 

targeting an implementation in 32 GPU of 16 nodes faster than 16 nodes of 16 CPU per node (16x16=256).  

The system matrix is sparse and the sparse matrix vector multiplication (SpMV) is a key feature. A first 

attempt to take advantage of GPU regarding SpMV is to write kernels for GPU performing the multiplication. 

Proceedings of the 10th ASMO UK Conference Engineering Design Optimization, Page 5



 

Association for Structural and Multidisciplinary Optimization in the UK (ASMO-UK) 

 

This approach provides a large flexibility and can be adapted to specific needs of the problem to be solved in 

regard of data storage layout and assembly. Good performance requires however an important development 

effort 
35, 36

. Geveler et al. based all the solver computation on one kernel for SpMV. This simplified the 

optimization. All effort was invested on this kernel and the entire solver could take advantage. This approach 

brings a programming overhead to turn all solver stages to SpMV functions. Efficient SpMV GPU 

implementations exist already: CUDA libraries (CUSPARSE) or Petsc. Wadbro et al. 
25

 used the CUBLAS 

library, the CUDA version of the linear algebra library BLAS, for inner products in the PCG. The active 

libraries OP2
41

 and LISZT
42

 provide a high-order abstraction for matrix vector multiplication. 

The GPU global memory is reduced to a maximal of 6GB for 1 card and therefore an explicit building of 

global system matrix is highly limiting the size of problems that could be treated. FEM problems in topology 

optimization are inherently local, thus a matrix-free solver of state equation is feasible
24

 and can be even one 

order of magnitude faster than a full-matrix solver 
43

. 

   

Assembly: 

Standard solvers build the system matrix computing node contributions and summing them to central 

elements for a global assembly. The solver is definitely the most time consuming part of a structure optimization 

method but the assembly part is also important. An adaptation of the assembly phase to GPU architecture saves 

computational time and improves the solver itself.  

During the assembly, a problem occurs if nodes are contributing in a parallel manner to build element 

stiffness. Two or more nodes could add their values to the same elements at the same time, which causes a race 

condition and an information loss. Zegard et al. 
26

 used a graph coloring technique to avoid such a case coloring 

a set of non-racing nodes with the same color. Different colors cover the entire computational domain. All node 

of the same color can be run safely in parallel. Another approach is to assemble the stiffness matrix element-

wise which never causes a race condition but results on nodes contribution calculated many times for different 

adjacent elements. Cecka et al. focus more on FEM assembly on GPU presenting low-level code optimization 

on CUDA targeting a speedup of 30x with single precision GPU code against double precision CPU version.   

 

Mesh: 

The mesh is crucial toward better use of GPU potential in structure analysis and optimization. An 

unstructured mesh provides certainly more flexibility to mesh complex domains surrounding complex 

geometries. It represents at the same time some challenges for the use of a GPU. The absence of ordered 

indexing and regular neighboring makes the memory access for node or cell data irregular and thus uncoalesced 

(see fig. 2).   

For unstructured meshes, the cell-based 

approach presents some regularity 

compared to vertices-based meshes (e.g. 

number of cell neighbors). A vertex can 

have different number of related vertices 

depending on its place in the mesh. On the 

other hand a cell with m edges will have m 

neighbors within the computational domain 

and less in the boundaries (m-1,m-2). 

The structured mesh is better fitted to a 

GPU, since the GPU threads can be 

mapped to the cell or nodes indices. 

Efficient unstructured mesh applications 

are more difficult for the GPU than the 

CPU since the GPU cache is reduced. The 

programmer should just avoid race 

conditions between threads. For the 

unstructured mesh and especially the vertex-based scheme a series of challenges are faced. Node renumbering 

and index list can help to keep a partly coalesced memory access.   

The process of meshing has been often the responsibility of CPU. In this field a large set of mesh 

optimization are available on CPU. D’Amato et al. 
45

 used however GPU for meshing. The mesh influences the 

storage layout of data structure. Reguly et al. 
43

 analyze the different data structures such as ELLPACK and 

CSR and how they affect both assembly and solution. Goddeke et al.
46

 propose a different renumbering than 

CSR reporting a speedup of 2x. 

 
Figure 2. On the left a structured mesh with fixed number of 

neighbors for cells and vertices. On the right an unstructured 

mesh with same number of nodes. Number of cell neighbors 

for unstructured mesh is almost the same for interior elements 

(m=3) but for interior vertices the number of neighbors varies 

from 5 to 7. 
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B. Shape Optimization 

The shape optimization is more restricted than topology optimization in the sense that the topology will 

remain untouched throughout the optimization process. The number of structure parts and the number of holes 

for example will be unchanged. Only the shape is changing to meet the problem specific constraints and 

objectives.  The shape is parameterized through mathematical function (e.g. Bezier splines). The parameters 

controlling the geometrical construct, such as spline control points or curvature, build the design variables of the 

shape optimization problem. These design variables have often a clear geometrical interpretation which explains 

the strong coupling between mesh and design variables in shape optimization. A change in a spline curvature for 

example will affect all adjacent cells throughout the entire spline. This leads in the end to solving a non-linear 

system of equation             in order to evaluate the objective function. The system matrix and the 

forcing term can depend on the design variables. With the increase in complexity, compared to topology 

optimization, linear algebra libraries can no more be applied, unless a linearization is performed.  

For many shape optimization problems, the flow is the driving factor through the optimization. For external 

flows over whole planes or wings, an aerodynamic shape optimization problem is solved to reduce the drag and 

increase the lift. For internal flows through engines or channels, an internal flow shape optimization problem is 

solved mainly to increase engine efficiency. Depending on the nature of the flow and the leading phenomena 

different equations have to be solved (see fig. 4).  

 
Figure 3. Chart of different topology optimization approaches and common techniques for function 

evaluation such as CSM computation with FEM.  
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 Lefebre et al. 
47

 optimized a 2D/3D 

Euler solver for GPU. Brandvik et al.
48

 

implemented a source-to-source compiler 

to execute CPU Navier-Stokes solver on 

GPU with speedup of one order of 

magnitude in turbomachinery application. 

Asouti et al.
49

 used a NS solver with an 

evolutionary algorithm optimizer for both 

external (airfoil) and internal applications 

(compressor cascade airfoil) achieving 

27x speedup.  

Shape optimization in GPU raises similar 

issue as topology optimization. Race 

conditions are avoided through cell or 

vertices coloring or through the cell-based 

calculation of fluxes.  

 

C. Multidisciplinary Design Optimization (MDO)  

 MDO methods optimize designs with regards to multiple disciplines. Most spread method is a bi-

disciplinary optimization making use of structure analysis and flow analysis
50

. No GPU work on this field was 

known to the author when preparing this review. Some initiatives exist of porting one of the disciplines (CFD or 

CSM) on GPU
51

. But generally when the complexity increases, developer try to decrease the scope of the 

development by working first on the MDO application for standard CPU. Exploring the GPU potential on 

established MDO CPU implementation is however promising in term of performance increase. 

IV. GPU in Meta-heuristics 

Metaheuristic methods can be classified as population-based and trajectory or  single solution based. 

Population-based methods, such as Evolutionary algorithm; swarm intelligence and particle swarm, manage a 

set of interacting individuum (solution), that are improved in every optimization iteration. These methods focus 

more on the exploration of the solution space than in the exploitation of the neighborhood of one solution. 

Single solution-based such as advanced local search, simulated annealing, Tabu search, update continuously 

only one solution toward finding an optima. Some trajectory-based methods keep track of all intermediate 

solution (TABU) other just replaces old with new solution. These methods focus more on the refinement of a 

solution through exploitation of local neighborhood than a general global exploration of solution domain. 

Hybrid methods combining both features exist. They start with an exploration and then perform a refinement. 

As seen in shape optimization some metaheuristic methods are applied for design optimization in GPU
49

. 

Many other meta-heuristic methods have been already used in shape and topology optimization but only 

implemented for CPU (Differential evolution
50

). The GPU implementations of many meta-heuristic methods in 

other area 
52, 53

 are encouraging to apply in design optimization. Ant colony optimization (ACO) is widely used
54

 

along with Genetic Algorithm
55

, local search
56, 57

 and Particle Swarm Optimization
58

. Taillard et al. explored the 

GPU potential for hybrid metaheuristic methods 
59

. 

V. Discussion 

CUDA enables developer to write code that is highly tuned for the used hardware. The CUDA developer 

community is increasing and useful tools help designing well performing codes: an integrated editor, debugger, 

profiler and memory checker. The prompt change in the GPU hardware scene from generation to generation 

requires however a continuous updating of high level programming skills. This effort can distract from 

discipline specific work. Whereas the most important issue is that a set of optimization techniques resulting 

from tremendous work can be made insignificant with a next hardware generation. The example of computing 

precision is well representative. First GPUs of 2007-2009 did not support double precision calculation. An 

important effort has been invested to mix GPU single precision and CPU double precision to achieve fast results 

without accuracy loss. This work is no more of interest, since recent GPUs support double precision. Some 

changes in GPU memory layouts, such as a larger shared memory or a larger L1 cache, can require a code to be 

retuned to keep best performance. CUDA itself was a relief from the graphics programming burden of early 

GPUs. A further abstraction seems unavoidable. The hardware specific optimization should be separated from 

the algorithm itself. This hardware oriented code tuning should be a responsibility of low-level system, while 

the user focuses on the high-level algorithm. One solution is to use directive-based tools such as openACC. The 

 
Figure 4. Aerodynamic shape optimization based on the 

function evaluation and the optimization method. The function 

evaluation is mainly about solving Euler equation for external 

flows and Navier-Stokes equation for internal flows. 

Proceedings of the 10th ASMO UK Conference Engineering Design Optimization, Page 8



 

Association for Structural and Multidisciplinary Optimization in the UK (ASMO-UK) 

 

high level abstraction is implemented in the openACC standard. The specific compiler of this standard is under 

commercial license.  Another alternative is to apply toolbox libraries such as CUSARSE and Thrust, and also 

vendor independent libraries
60

. A trade-off between peak performance hardware specific tuned code and a 

portable easy maintained code is inevitable. For large developer teams a computer science expert can focus only 

on the optimization of the implementation of algorithm developed by the rest of the team. But a high level of 

abstraction should not make from a GPU a black box for users. Learning the used hardware specifications helps 

always to design adapted algorithms and to recognize algorithms with high parallelism potential.  

VI. Conclusion 

This paper covered the use of GPU in the acceleration of design optimization problems focusing on topology 

optimization, shape optimization and multidisciplinary design optimization. Interesting speedup of 1 to 2 orders 

of magnitude have been reported in the literature for topology optimization and aerodynamics shape 

optimization problems. The core of the optimization process is often the simulation (CFD or CSM). Porting an 

optimization application is then more about porting the FEM solver or the CFD solver. For this purpose 

established libraries are available such as CUSPARSE and OP2 to prevent developer from getting distracted by 

purely technical aspects of programming.  

Concerning multidisciplinary design optimization a rarer use of GPUs is observed, which is basically 

influenced by the higher complexity of MDO problems and the multitude of tools and simulation involved in 

comparison with single-discipline design optimization.     

The number of metaheuristic optimizer running on GPU increased in many disciplines but not in design 

optimization. Especially population-based methods are inherently adapted to GPU, since the same procedure is 

repeated for independent individuum. This scheme maps very well to the thread structure of GPUs. 

Some methods are easily ported others are very hard to port and need a lot of redesigning. First interest of 

this paper was to recognize in design optimization the parts ready for GPU porting and the others that require 

more adapting effort. This makes possible the evaluation of the need for GPU. The next interest is to encourage 

developer to work in heterogeneous system. Tasks are distributed among CPUs and GPUs taking advantage of 

both systems. Cooperation between systems is wished rather than competition. 
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