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Numerical noise is an unavoidable by-product of Computational Fluid Dynamics 

(CFD) simulations which, in the context of design optimization, may lead to challenges in 

finding optimum designs. This article draws attention to this issue by illustrating the 

difficulties it can cause for road vehicle aerodynamics simulations. 

Firstly, a benchmark problem, flow past the Ahmed body, is used to highlight the 

effect of numerical noise on the calculation of aerodynamic drag. A series of simulations 

are conducted using three commonly employed Reynolds-Averaged Navier-Stokes 

(RANS) based turbulence models. Noise amplitudes of up to 22% are evident and the 

level of noise depends on the combination of turbulence model and grid used. Overall the 

Spalart Allmaras model is shown to be the least susceptible to noise levels for this 

particular application. 

Secondly, multi-objective aerodynamic shape optimization is applied to a low-drag 

aerodynamic fairing for a livestock trailer. The fairing is parameterised in terms of three 

design variables. Moving Least Squares (MLS) metamodels are constructed from 50 

high-fidelity CFD solutions for two objective functions. Subsequent optimization is 

successful for the first objective, however numerical noise levels in excess of 7% are 

found to be problematic for the second one. A deliberate revision to the problem reduces 

the amount of noise present and leads to success with the construction of a small Pareto 

Front. Further analysis underlines the inherent capability of MLS metamodels in dealing 

with noisy CFD responses. Suggestions are also made to improve the chances of success 

for future investigations. 

 

Nomenclature 

A3σ = Percentage amplitude of noise 

CD = Aerodynamic drag coefficient 

di = i
th

 design variable 

fr = Noise oscillation frequency 

F1 = Objective function for aerodynamic drag 

F2 = Objective function for ventilation rate 
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F3 = Objective function for temperature humidity index 

Ψ = Rear slant angle of Ahmed body 

Ω = Noise oscillation parameter 

σ = One standard deviation 

CFD = Computational Fluid Dynamics 

DoE = Design of Experiments  

MLS = Moving Least Squares  

RANS = Reynolds-Averaged Navier-Stokes 

THI = Temperature humidity index  

 

 

I. Introduction 

HE speed and power of computers has increased dramatically in recent years with performance 

improvements estimated to be between 1000 and 10,000 times compared to 20 years ago
1
. This capability is 

being exploited in the field of Computational Fluid Dynamics (CFD)-based optimization which is being 

harnessed across a range of areas including aerospace engineering
2,3

, tribology
4
, polymer moulding

5
, ship 

design
6
, vehicle aerodynamics

7-10
, hospital ward ventilation

11
 and jet pump design

12
. While these examples 

demonstrate the versatility of CFD-based optimization, there is one aspect which can prove problematic: the 

presence of numerical noise in the CFD responses
10,13-19

. 

 Numerical noise has long been a hindrance for computation with problems first reported from finite element 

tidal simulations in 1974
20

 as well as other related examples in the subsequent years
21-23

. In these cases, 

numerically induced oscillations were particularly troublesome. To the authors’ knowledge, the investigation by 

Giunta et al.
13

 is the first to cite numerical noise as a hindrance to numerical optimization in the design of a 

high-speed civil airliner using CFD. Optimization on polynomial response surfaces was made difficult by 

spurious noise-induced local minima, which ‘trapped’ the optimizer. Implementing a method of skipping over 

these local minima using large move limits in the initial stages of the optimization search was beneficial, 

however this approach did not address the fundamental problem and no single optimum solution was found.  

Later the impact of noise on response surfaces was also discussed by van Keulen et al.
14

 for structural 

applications. Madsen et al.
15

 and Shyy et al.
16

 commented that noise originating from numerical simulations is 

much less recognised than for physical experiments. It is important to appreciate that numerical noise is an 

inherent by-product of computer simulation
15,24,25

 which cannot be avoided. Furthermore, the observed 

behaviour is rather different from the noisy responses originating from experiments. For a given physical 

experiment there will be statistical variation in the answer due to errors and uncertainties originating from 

controlled and uncontrolled variables. In contrast, numerical experiments produce the same output for a given 

set of input variables provided all aspects of the simulation are constant (e.g. matching initial/boundary 

conditions, identical grid structure, solver version and computer hardware/architecture). What distinguishes 

numerical experiments from their physical counterparts is that the errors (and thus the noise) are repeatable due 

to their deterministic nature
18

.  

It follows that for optimization studies requiring analysis of a wide range of designs (e.g. via metamodelling) 

this characteristic can lead to problems in identifying optimum designs
10,13

. Whilst these issues have received 

attention there are no studies dedicated exclusively to numerical noise and the negative impact it can have on 

CFD-based optimization. The purpose of this article is to draw attention to these in the context of road vehicle 

aerodynamics. It is structured as follows: Section II characterizes numerical noise for a benchmark vehicle 

aerodynamics problem. Section III describes an investigation into aerodynamic shape optimization of a low-

drag fairing for a practical road vehicle, where the difficulty of metamodel-based optimization in the face of 

noisy CFD responses is highlighted. Finally sections IV and V draw on the results from sections II and III to 

propose strategies for dealing with numerical noise in the context of CFD-based design optimization. 

  

II. Numerical Noise: Analysis of the Ahmed body 

The Ahmed body is a simple generic road vehicle commonly used as a benchmark for vehicle aerodynamics. 

Ahmed
26

 conducted a wind tunnel investigation around this shape and the results are often used to validate 

numerical simulations. This section describes numerical results obtained for the flow around the Ahmed body 

with emphasis on numerical noise.  

 

 

 

T 
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A. Ahmed body 

Fig. 1 illustrates the Ahmed 

body which consists of a solid 

block measuring 0.94 m long, 0.39 

m wide and 0.29 m high. It has 

rounded leading edges with a 

radius of 0.10 m at the front and a 

notch rear with a slanted face. The 

size of the notch is governed by 

the slant angle, ψ, which is kept 

constant at 30º. In order to 

simulate the flow field around the 

vehicle, a solid model was 

generated using Ansys Design 

Modeler (version 13.0)
27

.  

The size and shape of the air volume surrounding the vehicle is defined using the dimensions of the wind 

tunnel originally used by Ahmed
26

. The closed-return open working section tunnel was supplied with airflow 

through a square nozzle of 3 m x 3 m. The vehicle was mounted on a ground board of length 5 m with the 

vehicle centre located 2.13 m downstream of the inlet. To reduce the computational effort a symmetry plane was 

employed and the working section was assumed to have a constant cross-section matching the dimensions of the 

inlet nozzle. No-slip boundary conditions were used on all solid walls, whereas the side and ceiling of the 

domain were assigned a zero shear stress boundary condition which is appropriate given the original open-

section wind tunnel layout. 

B. Numerical grid structure 

Recent CFD investigations of airflow past a bluff vehicle in a wind tunnel have demonstrated the importance 

of grid density, cell type and the choice of turbulence model for predicting aerodynamic drag
28,29

. In this 

investigation three grid densities are considered for each of the following cell types: (i) hexahedral, (ii) 

tetrahedral and (iii) polyhedral, giving 9 grids in all. Each of these employ a boundary layer grid adjacent to 

solid walls, see Fig. 2.  

 

 

             
 

 

Figure 2: Local grid structure on the symmetry plane (dark cells) at the rear of the Ahmed body for (a) 

hexahedral, (b) tetrahedral and (c) polyhedral cell types. 

 

Table 1 summarises each grid and Fig. 2 shows the local grid structure at the base of the vehicle for the 

coarse hexahedral, tetrahedral and polyhedral grids respectively. The hexahedral and tetrahedral grids were 

generated with AnsysMesh (version 13.0)
27

 and the polyhedral grids were produced using an agglomeration 

procedure within Fluent (version 13.0.0-sp2)
27

 which converts a standard tetrahedral grid into an equivalent 

polyhedral one.   

    

 

      

  
Global Cell Count 

Grid type Local grid spacing (m) Hexahedral Tetrahedral Polyhedral 

Coarse 0.015 229512 396106 173934 

Medium 0.010 479865 703887 302074 

Fine 0.007 699314 1383917 583475 

Table 1: Grid statistics 

ψ 

Support pillar                          

Rounded 

leading edges 

Slanted rear face 

(a)                                                       (b)                                                       (c)                   

Figure 1: The Ahmed body 
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C. Turbulence models 

The choice of turbulence model is an important consideration prior to computing solutions to the governing 

incompressible Navier-Stokes equations. This is especially so for high Reynolds number turbulent flow such as 

the one being investigated. In order to assess the impact of turbulence model on the amount of numerical noise 

present, three models suitable for simulating external aerodynamics, were chosen, namely: (i) the Spalart 

Allmaras model
30

 (SA), (ii) the realizable k-ε model
31

 (RKE) and (iii) Menter’s shear-stress-transport k-ω 

model
32

 (SSTKO). 

Steady-state solutions were computed using Fluent (version 13.0.0-sp2)
27

 for each turbulence model on all 9 

grids, giving 27 solutions in total. All solutions assumed a free-stream velocity of 60 m/s and turbulence 

intensity of 0.5% at the inlet
26

 (Note that the relatively high inlet velocity is to compensate for the reduced scale 

of the vehicle, leading to a Reynolds Number of 4.3 million which is consistent with the original experiments
26

). 

Irrespective of the turbulence model-grid combination employed, every simulation utilised second order 

discretisation of the flow equations in conjunction with the SIMPLE
33

 pressure-velocity coupling algorithm. 

Although solution convergence was generally achieved in fewer than 1000 iterations, all simulations were run 

for a total of 5000 iterations to eliminate convergence errors.   

D. Quantification of numerical noise 

For each of the simulations described above, the drag coefficient of the vehicle, CD, was monitored 

throughout the 5000 iteration cycle. In all cases numerical noise was evident, characterised by a combination of 

structured periodic cycles with apparently random oscillations superimposed. Fig. 3 shows a typical noise 

sample from one of the simulations, taken from iterations beyond the point of solution convergence.  
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f
r
 = 0.42      A

3
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CFD Iteration Number

Oscillation peak

 
Figure 3: Example of numerical noise shown by one SA solution on the fine hexahedral grid. 

 

Interpretation of these characteristics is difficult from visual inspection alone and so there is a need to 

quantify the noise levels more precisely. The noise levels can be decomposed into the frequency and the 

amplitude of oscillation. The former is conveniently defined by the percentage oscillation frequency, fr, given 

by: 

n
f

n

i

i

r






 0100 ,                                                  (1) 

 

where Ωi is the oscillation parameter evaluated for the i
th

 iteration for a sample size of n iterations. For a 

monotonic increase in CD from one iteration to the next, Ω = 0. For a maximum or minimum point (i.e. 

oscillation peak in Figure 3) the sign of the gradient dCD/di changes and so Ω = 1. Therefore, if fr = 0 the signal 

is likely to be stable with no oscillations present, whereas fr = 100 is indicative of a fully oscillatory signal 

where the gradient changes sign every iteration. A point of note is that fr accounts for all local gradient changes 

but it does not consider low-frequency oscillations (e.g. on the order of 100’s of iterations). As CFD solutions 

for steady state problems are typically taken from the final iteration, low-frequency oscillations are far less 

influential and thus less relevant than the high frequency ones described by fr.  

As well as frequency, the amplitude of each individual oscillation is important as it accounts for the 

magnitude of the variations. For a given sample size, three standard deviations, 3σ, is an adequate measure of 

the data spread because it accounts for 99.7% of the values recorded. This is used to define the percentage 

amplitude of noise, A3σ, (for the sample) relative to the mean value, namely: 

 

DC
A







3
1003

,                                                 (2) 
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where σ is the standard deviation and 
DC  is the mean drag coefficient for a sample of size n. As with fr, 

small values of A3σ signify less noise whereas larger ones signify a noisy response. For the 150-iteration sample 

shown in Fig. 3, fr = 42.0% and A3σ = 0.4%; i.e. the noise is frequent but its impact is minimal because of the 

small amplitude. 

E. Impact of grid type, cell type and turbulence model 

The parameters defined by equations (1) and (2) are used to analyse the numerical noise present in the data 

obtained for CD for the range of iterations: 2500-5000, per simulation. A sensitivity study showed that this 

sample size is large enough to adequately characterise both fr and A3σ and it only considers the converged region 

of each solution. Table 2 summarises these parameters along with the mean drag coefficient, 
DC , for the range 

of grid-turbulence model combinations tested. In all cases the computed drag coefficients are less than the 

equivalent experimental value
26

 of 0.378. Overall the SA model gives the most satisfactory result with the RKE 

and SSTKO models generally exhibiting the smallest drag values. 

Table 2: Computed mean drag coefficients and associated numerical noise as a function of grid type, cell 

type and turbulence model. Note: from ref 26 the experimental drag coefficient, 378.0DC . 

 

Both fr and A3σ vary considerably, depending on the grid and cell type and the turbulence model; clearly all 

three factors impact the noise levels which is consistent with earlier studies
15-17

. The differences in the observed 

values of fr illustrate that the noise levels are not in phase from one simulation to another. In terms of the 

amplitude of oscillations they are below 1% for all SA solutions, however variations as high as 22.6% and 7.6% 

are present in the solutions for the RKE and SSTKO models, respectively. The choice of turbulence model is 

instrumental in determining the noise levels for this particular application.  

 In many cases the frequency and the amplitude are greatest for solutions computed on the tetrahedral grids 

compared to the hexahedral and polyhedral ones, however there is no apparent correlation with the grid density. 

In some cases the noise amplitude increases as the grid becomes finer, e.g. SA solutions on the hexahedral and 

polyhedral grids. However, for the remaining cases the largest amplitudes (per combination of cell type and 

turbulence model) can occur for either the coarse, medium or fine grid densities. Whilst there is a lack of 

generality for these results, the fine-grid solutions are inevitably closer to being grid independent and so these 

are more relevant to the overall discussion. 

Fig. 4 shows a 400-iteration sample of the relative drag coefficient (with respect to the mean value, 
DC ) as a 

function of turbulence model and cell type for fine-grid solutions only. For all cases the noise levels exhibited 

by the tetrahedral-grid solutions are noticably greater than the equivalent hexahedral and polyhedral ones with 

multi-modal responses clearly seen. Solutions obtained on the hexahedral and polyhedral grids show noise 

levels with significantly smaller amplitudes and reduced frequencies. Considering the results for each turbulence 

model in turn, the noise levels are smallest for the SA model with a range of values generally within ±0.5% of 

the mean with the exception of some local variations of the order ±1.0% for the tetrahedral-grid solutions, see 

Fig. 4(a). For the RKE model, again both the hexahedral and polyhedral grid solutions show variations within 

±0.5% of the mean value, however those for the tetrahedral grid are up to ±8.0%, Figure 4(b). The same trend is 

seen for the SSTKO model although the hexahedral and polyhedral-grid solutions exhibit larger variations of 

±3.0% compared to those obtained with the other models. In summary, these results illustrate the extent of 

  

                  

    SA RKE SSTKO 

Grid type Cell type 
DC  fr (%) A3σ (%) 

DC  fr (%) A3σ (%) 
DC  fr (%) A3σ (%) 

Coarse Hexahedral 0.368 55.7 0.1 0.339 79.1 0.1 0.309 14.5 1.6 

Medium Hexahedral 0.353 8.6 0.2 0.313 13.8 0.0 0.298 24.0 1.1 

Fine Hexahedral 0.341 39.2 0.4 0.342 41.4 0.5 0.300 13.2 1.6 

Coarse Tetrahedral 0.367 95.1 0.4 0.377 9.4 22.6 0.324 28.0 7.6 

Medium Tetrahedral 0.354 100.0 0.0 0.308 16.3 2.3 0.304 39.8 0.0 

Fine Tetrahedral 0.351 96.2 0.8 0.317 75.2 8.3 0.332 76.4 7.2 

Coarse Polyhedral 0.354 100.0 0.0 0.318 49.8 0.0 0.327 100.0 0.0 

Medium Polyhedral 0.346 2.6 0.1 0.302 39.8 0.0 0.309 9.2 5.1 

Fine Polyhedral 0.344 3.2 0.3 0.296 23.0 0.1 0.299 13.6 3.2 

           

Proceedings of the 10th ASMO UK Conference Engineering Design Optimization, Page 59



 

Association for Structural and Multidisciplinary Optimization in the UK (ASMO-UK) 

 

numerical noise for what is a relatively simple application. This striking variation of output is also seen in more 

complicated flow problems as will be shown in the following section.  
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Figure 4: Plots of the relative drag coefficient (

DD CC / ) as a function of steady-state iteration number per 

grid cell type for (a) SA, (b) RKE and (c) SSTKO turbulence models. Note the smaller y-axis scale for (a).  
 

III. CFD-Based Optimization  

The results presented above demonstrate how a very basic parameter, the drag coefficient, can vary 

substantially in steady-state CFD simulations. Cleary this has implications for CFD-based design optimization 

methods because many designs are typically evaluated with each being susceptible to varying levels of noise. 

The following section considers the effect this can have as part of an optimization problem for a practical 

engineering investigation.  
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A. Livestock trailer design 

The majority of animals transported between farms, abattoirs, and markets within the United Kingdom are 

carried in small box-shaped livestock trailers, such as the one depicted in Fig. 5. They are towed by off-road 

vehicles and ventilation is supplied passively by virtue of vehicle movement. A series of rectangular side vents 

allow for air exchange between the internal environment and the external free-stream. This is effective at 

maintaining a stable micro-environment in the upper deck, however the lower deck exhibits reduced 

ventilation
28,29

.  

 

 
Figure 5: Illustration of a typical livestock trailer and towing vehicle. 

B. Optimization problem formulation and design of experiments 

Implementing changes to the trailer layout to improve the conditions in the lower deck is not viable due to 

practical constraints, however, implementing a retrofitted headboard fairing represents a feasible solution; with 

the purpose being to (i) reduce aerodynamic drag whilst (ii) maximising ventilation within the trailer. Such a 

problem lends itself to multi-objective metamodel-based optimization and this is the approach used here. 

 The proposed fairing is parameterised in terms of three design variables, namely the side radius, d1, the 

lower edge extension, d2 and the central extension of the fairing, d3, see Figs. 6a and 6b. The purpose is to apply 

aerodynamic shape optimization in satisfying the following criteria: 

 

                                                                      min F1 (d) and max F2 (d),                                        (3) 

 

where                                          3 ,2 ,1  ,  iddd U

ii

L

i
;                                         (4) 

 

F1 and F2 are the objective functions for the aerodynamic drag coefficient (dimensionless) and the ventilation 

rate (m
3
/s), respectively while di is the i

th
 design variable subject to relevant lower (

L

id ) and upper (
U

id ) 

physical constraints.  
 

 

 

 

 

 

 

 

 

 

 

 

     
 

Figure 6: Parameterisation of the headboard fairing viewed from (a) the side and (b) above the trailer, (c) 

plot of the Design of Experiments (DoE) together with three sample fairing designs (d-f). 
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 The optimization strategy involves building metamodels for each objective function (F1 and F2) and then 

optimizing on these to obtain a Pareto front from which to determine the optimum fairing design. To achieve 

this, each metamodel is fitted to CFD responses from fifty fairing designs which are chosen by an Optimal Latin 

Hypercube (OLH) Design of Experiments (DoE)
34

. Fig. 6(c) depicts the DoE and three sample fairings, Figs. 

6(d-f), which exist within the design space. In important characteristics of the DoE is the uniformity of point 

coverage which is governed by the Audze-Eglais potential energy criterion
35,36

.  

C. CFD Solutions  

Steady-state CFD solutions to the governing incompressible Navier-Stokes equations were used to assess 

each fairing by obtaining values of F1 and F2. A preliminary grid independence study carried out on the baseline 

trailer (Fig. 5) showed that a hybrid hexahedral-tetrahedral grid consisting of 6.7 million cells led to small 

discretisation errors of 1.5% and 2.0% for F1 and F2, respectively
10.

 As demonstrated in section II, solutions 

computed on both hexahedral and polyhedral cell types lead to reduced noise levels compared to tetrahedral 

cells. In practice, hexahedra are easier to implement than polyhedra and they are less susceptible to numerical 

diffusion. For this reason hexahedral cells were placed in as many regions of the solution domain as possible 

including a structured boundary layer grid adjacent to the primary surfaces of the livestock trailer. Inevitably 

tetrahedral cells were required in the remaining volume due to the geometric complexity which illustrates one of 

the challenges of practical CFD application. 

As shown previously, the Spalart Allmaras turbulence model generally exhibits small noise amplitudes for 

road vehicle aerodynamics simulations. Preliminary simulations of flow around the baseline configuration 

(Figure 5) verified that this model performs better than both the SSTKO and RKE models. Furthermore, the SA 

model has been shown to produce accurate results when validated against wind tunnel experiments of a 1/7
th
 

scale livestock trailer
28

. Computations were carried out using Fluent
27

 (version 6.3) for a total of 10,000 

iterations and convergence of all quantities was observed after 9000 of these, thus ensuring that no inaccuracies 

were present due to convergence error. 

D. Optimization strategy 

 Having obtained all fifty sets of CFD solutions, metamodels were built for each objective function using the 

Moving Least Squares (MLS) method
37,38

 within HyperStudy (version 8)
39

. This technique caters for noisy 

responses by selecting an appropriate closeness of fit parameter, θ, which is contained within a Gaussian weight 

decay function, namely: 

 2exp jj rw  ,                                              (5) 

 

where rj is the Euclidean distance of the metamodel prediction location from the j
th

 DoE point
38

. High noise-

smoothing is achieved if θ is small because the fit is loose due to the approximation whereas high values of θ 

lead to interpolation and no smoothing. Each metamodel was tuned to give the optimum value of θ to ensure the 

best fit to the CFD responses, see ref 10 for more details.  

 Once constructed, each MLS metamodel was analysed with a combination of global and local search 

methods using a Genetic Algorithm (GA) and the Sequential Quadratic Programming (SQP) technique, 

respectively. This strategy was used to locate candidates for an optimum design (per metamodel) before 

validating with a CFD solution and repeating the process until an optimum design was converged upon. 

E. Numerical noise issues 

 For each CFD simulation, responses for F1 or F2 were taken from the final iteration. Satisfying the second 

objective of maximising ventilation proved difficult because all fifty fairing designs resulted in poorer 

ventilation compared to the baseline case (i.e. no fairing present). Further analysis showed that the presence of 

any given fairing streamlined the front of the trailer which guided airflow past the vents instead of through them 

thereby reducing the ventilation rate. Consequently, maximizing ventilation (equation 3) is not feasible with the 

current problem formulation. Instead, the second objective was changed such that the percentage reduction in 

ventilation rate could be minimized (min F2 (d)) which is equivalent to minimising the negative impact that the 

fairing has on ventilation
10

. 

 The optimization strategy described above was applied to both objectives. The first objective, to minimise 

drag, was achieved at the expense of only one extra simulation which used a parameter set from one corner of 

the design space. In contrast, the second objective of minimising the reduction in ventilation rate was 

unsuccessful: the optimizer repeatedly predicted a fairing which was poorer than many of the DoE points. 

Despite this the proposed design was evaluated using an additional CFD simulation but this made no change and 

the design exhibited poor performance. In an effort to construct a Pareto front with the possibility of finding 

better ventilation designs, four additional designs were suggested by the metamodel. Each of these was found by 

placing a constraint on F1 to give F2 for each design
10

. CFD solutions were obtained for each but the results 

were poor and they did not lead to an optimum design for this objective. 
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 The presence of numerical noise in each CFD solution for F2 was suspected to be the cause of the difficulties 

encountered. This is explored in Fig. 7 which shows a typical solution history where the drag coefficient, CD, 

and the ventilation rate, Q, are plotted as a function of the iteration number. Note that CD and Q are the basis for 

F1 and F2 respectively. Closer inspection of CD over the converged portion of the data (Fig. 7b) shows that the 

noise frequency is relatively high at 36.7%, although this is accompanied by a small amplitude of 0.6% (i.e. ± 

0.3%). In contrast, Q, which is used in the calculation of F2, exhibits lower frequency noise of 1.3%, however, 

the amplitude is large at 7.0%.  

In light of these noise levels, it is unsurprising that the optimization of F2 was unsuccessful. Each CFD 

solution was taken from the final (10,000
th
) iteration which could have coincided with any point on the noisy 

response which was independent of the design.   
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Figure 7: Plots of typical noise levels for one CFD solution. 

 

In an effort to mask the noise levels, each solution was run for a further 2000 iterations (beyond the initial 

10000) before taking an average of the quantity of interest over the extended portion. New metamodels were 

built using these ‘mean value’ solutions; however, this did not remedy the problems and optimization was not 

successful
40

.  
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F. Revised problem 

 The fact that masking pronounced noise levels using mean solutions did not remedy optimization problems 

led to the conclusion that there was something fundamentally wrong with F2. Whilst the ventilation rate is a 

suitable measure of the air quality within the trailer, its calculation is based on 2D surface integrals of the 

volumetric flow rate through each of the side vents in the lower deck (Figure 5). As these regions are oblique to 

the free-stream, large flow gradients are present and this leads to the high noise levels cited above. Further 

investigation revealed that the vent openings experiencing the greatest flow gradients produced the highest 

variability (and thus noise) from iteration to iteration as each solution progressed.  By basing the objective 

function on a 3D volume-averaged quantity, the impact of high flow gradients reduces substantially. 

Consequently, the temperature humidity index (THI)
41

, which has units of ºF, was chosen. By taking the 

volume-average of this quantity throughout the lower deck of the trailer, thermal comfort and thus animal 

welfare is considered instead of ventilation. Accordingly the problem was revised to: 

 

min F1 (d) and min F3 (d),                                     (6) 

 

where F3 is the objective function representing THI. Using the previous solutions as a basis, all simulations were 

run for an additional 4000 iterations with extra transport equations for energy and species also solved; these 

account for thermal effects and humidity which are required in the calculation of THI. Source terms for energy 

and moisture production were used to represent animal warmth and perspiration so that F3 could be calculated 

for hot (30 ºC) and humid (relative humidity = 95%) ambient conditions (see ref 10 for more details).  

Results from the revised simulations were found to be free of significant noise levels, with mean amplitudes 

of 0.3% and 0.2% evident for F1 and F3, respectively. Overall, the noise frequency is greater in the results for 

F3; however, the small amplitudes present for both objective functions underline the dramatic improvement 

which is in complete contrast to the noisy responses seen earlier.   

 

G. Optimum design 

 The aforementioned optimization strategy was repeated with the revised data. As expected the drag 

metamodel predicted the same optimum fairing design (i.e. for F1) as before, whereas the THI metamodel 

revealed a candidate for min F3(d). An additional CFD simulation verified that this design gave the smallest THI 

of all the designs tested, suggesting that the optimum for F3 had been found, see “Min-THI” in Fig. 8. This 

conclusion was verified from subsequent metamodel rebuilding and optimization with the additional point; it did 

not lead to a better design. Fig. 8 shows the final objective function plot which includes the minimum for each 

objective. Note that the small Pareto front was generated using a multi-objective genetic algorithm (MOGA)
42

 

which was applied to both metamodels. 

 

 
Figure 8: Objective function plot for the revised optimization problem 
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 Of all the data points shown in Figure 8, the locations of the “Extra Points” are particularly noteworthy. 

These four designs were predicted in the isothermal optimization (section II part E) yet they exhibited sub-

optimal performance in terms of ventilation and drag. With the above problem revision these very same designs 

now reside in the most promising region of the objective function landscape and one of them is in fact Pareto 

optimal. Therefore, in spite of the pronounced noise levels seen in the isothermal study, the MLS metamodelling 

technique was successful in filtering this noise and thus identifying optimal design characteristics. It follows that 

the MLS metamodels in this study were in fact more accurate than the high-fidelity CFD solutions used in the 

initial problem formulation. This stems from the inherent noise-handling capability of the approximation-based 

technique employed and is consistent with the earlier findings of Papila and Haftka
43

. 

Of all the designs considered, the “Min-THI” design was considered to be the overall optimum because it 

has the lowest value of THI whilst the corresponding drag is close to the minimum drag design. Fig. 9 illustrates 

the aerodynamic improvement by comparing the size of the wake of the optimum fairing to that of the baseline 

design (i.e. no fairing); the wake is significantly smaller and the overall drag is reduced by 5.3%.   

 

 
Figure 8: Wake structure comparison for (a) the baseline trailer and (b) the optimum one. Wake 

represented using iso-surfaces of constant velocity magnitude of 5 m/s. 

 

IV. Discussion 

The results presented in this article demonstrate how numerical noise can affect CFD solutions for road 

vehicle aerodynamics simulations. They illustrate how noise levels depend on the grid density, cell type and 

turbulence model which agrees with previous investigations
15-17

. Flow solutions computed on tetrahedral grid 

structures exhibit the greatest noise levels compared to those for hexahedral and polyhedral grids. On the whole, 

solutions obtained using the Spalart Allmaras turbulence model have far less noise than those for the realizable 

k-ε and SST k-ω models, for this particular application.  

Noise levels are conveniently described in terms of the frequency and amplitude with variations in the latter 

effectively placing an error band on each solution. As steady-state solutions develop (beyond convergence), 

large amplitudes lead to iteration dependence and this can be particularly problematic when multiple designs are 

considered. A more representative solution for each design should be taken from the average of a suitably large 

sample using solution monitors; this serves to remove the fluctuations which make up numerical noise.  

Although mean values are an effective way of masking noise levels, they cannot address fundamental 

problems with the choice of objective function. The livestock trailer optimization study undertaken illustrates 

how an inappropriate objective function can in fact prevent optimization. High flow gradients in critical 

locations within each flow field were responsible for pronounced noise levels and in searching for an optimum 

ventilation design a series of designs proposed by an MLS metamodel were shown to be ineffective. In spite of 

this, a subsequent change to the choice of objective function showed that these apparently sub-optimal designs 

resided in the most promising region of the objective function landscape (Fig. 7). The difference with the 

revised problem was that the objective function was based on a volume-averaged quantity which is far less 

susceptible to noise levels than 2D quantities measured in turbulent flow regions. Whilst it took the problem 

revision to identify an optimum design, the earlier MLS metamodels had in fact found optimal design 

characteristics despite noise levels in excess of 7%
40

. The conclusion that MLS approximations can deal with 

significant noise levels and still manage to identify optimum designs is a key point of this article.  

7.2m                                                             5.6 m 

(a)                                                                        (b) 
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In addition to the optimization strategy, the quality of the CFD methodology is equally important. 

Maximizing solution quality can be achieved by following verification and validation (V&V) procedures such 

as the widely adopted guidelines from the AIAA
44

, ERCOFTAC
45

 and ASME
46

. These advocate great care in 

preparing CFD simulations to minimise the errors present. The quality of CFD solutions can also be improved 

using experimental data which is useful for minimising uncertainties when prescribing boundary conditions for 

example. Although physical experiments are also subjected to errors, data obtained from them can be extremely 

valuable for validating the performance of individual numerical models. 

 

V. Conclusion and Recommendations 

Many steps can be taken to improve the chances of success in CFD-based optimization. It is essential to use 

high quality CFD responses which can be achieved by minimising errors where possible. Double-precision real 

number representation helps reduce round-off error, convergence errors can be avoided altogether if simulations 

are run for a sufficient number of iterations and grid independence studies can be used to select the most 

appropriate grid density and to provide an estimate of the discretization error. Validation data from relevant 

experiments is extremely valuable in ensuring that the fundamental flow physics is being adequately represented 

by the computations. 

Whilst these steps are beneficial, the aforementioned errors contribute to fluctuations in a given solution 

which can be defined as numerical noise. Noise levels should be monitored for quantities of interest (i.e. 

objective functions) and the degree of variation observed. This study required simulations to be run for more 

than 2000 iterations (post convergence) to visualise both high and low frequency oscillations. Variation of up to 

7% were seen and this had a negative impact. In the event of optimization problems in other investigations, it is 

advised, following ref 15, that a small region of the design space is explored to determine the sensitivity of the 

CFD responses to slight changes in the design variables. For a small enough region this procedure should result 

in almost linear variations; strong non-linearity (as was the case in Fig. 7) may be a sign of potentially 

destructive levels of numerical noise. 

 Emphasis should also be placed on the problem formulation and particularly on the choice of objective 

functions to be used in optimization studies. Basing these quantities on flow parameters which are measured in 

regions exhibiting high flow gradients can dramatically skew solutions. Where possible, such quantities should 

be based on solutions from a number of cells so that the average of these is representative of the objective 

function whilst retaining an element of stability (i.e. less noise). Finally, the benefits of approximation-based 

metamodels such as MLS are ideally suited to dealing with numerical noise and they can be readily incorporated 

into optimization studies.   
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